1) One of several posts where Andrew Gelman mulls over the research of a business school professor:
2) RSA-129 from Numberphile:
3) RJ Lipton reports on an impressive 5-man panel discussion (including one fool ;) of P vs. NP:
4) If you’re not too tired of hearing problems with p-values, well here’s a litany:
5) A John Baez update on science data amidst the world of Trumpian obfuscation:
6) Futility Closet aired the story of Ramanujan on their podcast this week:
7) The map of mathematics via YouTube:
8) Mircea Pitici’s “The Best Writing On Mathematics 2016” is now available:
The “Introduction” here: http://press.princeton.edu/chapters/i10953.pdf
9) The foundations of symplectic geometry from Quanta:
https://www.quantamagazine.org/20170209-the-fight-to-fix-symplectic-geometry/
10) The latest "Carnival of Mathematics":
http://mathmisery.com/wp/2017/02/10/carnival-of-mathematics-142/
10) The latest "Carnival of Mathematics":
http://mathmisery.com/wp/2017/02/10/carnival-of-mathematics-142/
11) At Math-Frolic this week I briefly looked at a physics book and yesterday reported the news of Raymond Smullyan’s death.
Potpourri BONUS! (extra NON-mathematical links of interest):
1) The fellow behind the @TrumpDraws Twitter viral account:
2) And ICYMI, John Cleese’s letter to the U.S. (though I think perhaps he’s overreached his power a wee bit):
P versus NP is considered one of the great open problems of science. This consists in knowing the answer of the following question: Is P equal to NP? This incognita was first mentioned in a letter written by John Nash to the National Security Agency in 1955. Since that date, all efforts to find a proof for this huge problem have failed.
ReplyDeleteI show a solution to that problem as follows:
Given a number x and a set S of n positive integers, MINIMUM is the problem of deciding whether x is the minimum of S. We can easily obtain an upper bound of n comparisons: find the minimum in the set and check whether the result is equal to x. Is this the best we can do? Yes, since we can obtain a lower bound of (n - 1) comparisons for the problem of determining the minimum and another obligatory comparison for checking whether that minimum is equal to x. A representation of a set S with n positive integers is a Boolean circuit C, such that C accepts the binary representation of a bit integer i if and only if i is in S. Given a positive integer x and a Boolean circuit C, we define SUCCINCT-MINIMUM as the problem of deciding whether x is the minimum bit integer which accepts C as input. For certain kind of SUCCINCT-MINIMUM instances, the input (x, C) is exponentially more succinct than the cardinality of the set S that represents C. Since we prove that SUCCINCT-MINIMUM is at least as hard as MINIMUM in order to the cardinality of S, then we could not decide every instance of SUCCINCT-MINIMUM in polynomial time. If some instance (x, C) is not in SUCCINCT-MINIMUM, then it would exist a positive integer y such that y < x and C accepts the bit integer y. Since we can evaluate whether C accepts the bit integer y in polynomial time and we have that y is polynomially bounded by x, then we can confirm SUCCINCT-MINIMUM is in coNP. If any single coNP problem cannot be solved in polynomial time, then P is not equal to coNP. Certainly, P = NP implies P = coNP because P is closed under complement, and therefore, we can conclude P is not equal to NP.
You could read the details in the link below...
https://hal.archives-ouvertes.fr/hal-01509423/document